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Non-equilibrium stationary states in the 1 -d BEG model: first- 
and second-order phase transitions 
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Departamento de Fisica do Universidade do Potto. Prqa Gomes Teixeira, 4000 Porto. 
Portugal 

Received 9 September 1992, in final form 5 May 1993 

Abstract. Monte Carlo simulations and finite-size scaling were used to study the one- 
dimensional BEG (Blume-Emely-Gnffiiths) model under the influence of two competing 
dynamics: single spin flip (Glauber dynamics at finite temperafllre T) and random exchange 
of two spins (Kawasaki dynamics at infinite temperature). The phase diagram shows first- and 
second-order phase transitions. The critical exponents are obtained for different values of the 
rates and the range of the exchanges. We find 6 = 0.325 f 0.020. y = 0.996 tt 0.004 and 
Y = 1.71 i 0.01 for long-range exchanges and equal intrinsic rates. However, for different 
rates and nearest-neighbour exchanges we obtain ,3 = 0.07 * 0.03, y = 1.60 f 0.06 and 
v = 1.53 i 0.08, thus exhibiting non-universal behaviour. 

1. The model 

Recent years have witnessed a growing interest in non-equilibrium systems. These are 
often referred to as probabilistic cellular automata [l] or interacting particle systems [2] 
respectively in the physics or mathematical literature. The statistical mechanics. of non- 
equilibrium stationary states is still an open problem. in marked contrast to equilibrium 
systems. The main difference is that the steady-state probability distribution is not known 
apriori. Analytical studies are at present restricted to infinitely fast exchanges [3]. For the 
other cases, simulation methods are used. 

One way to obtain non-equilibrium  stationary states is through competition between 
two dynamics, e.g. two Glauber dynamics at different temperatures [4] or.Glauber (T finite) 
competing with Kawasaki dynamics at infinite temperature [5]. Here we will report a study 
of the one-dimensional BlumeEmery-Griffiths (BEG) model, which presents a rich variety 
of phase transitions and non-universal critical behaviour. 

Our system is a simple one-dimensional lattice, at each site of which there is a three 
state spin ui = i.1,0, where i E Z1. Denoting the general configuration of the system by 
U = (U; : i E Z'), the reduced Hamiltonian is defined as 

Du,']. 

We consider two mechanisms by which a configuration of the lattice U evolves in time: 

t Financial support by JNICT. Junta Nacional de Investigago Cientifiica e Tecnol6giea, project CEK386/90. 
t Supported pottially by a grant from lnstituto Nacional de Investiga& Cienti6ca (INK). 
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(i) Glauber dynamics in which a spin flips at a site i, U; + U;, with a rate W?, 

where x = U;-, + ui+, and y = + uLl. This rate obeys detailed balance with respect 
to a heat bath at temperature , T I .  We notice that, as D -+ --CO, configurations with spins 
in the state 0 are forbidden; therefore, in this limit we recover the results for the (two-state) 
king model. More generally, this same limit is obtained, particularly at low temperatures, 
when the model parameters are such that only transitions between the fl states are allowed. 

(ii) The exchange Kawasaki dynamics at infinite temperature (T = 00) in which two 
distinct spins in the lattice i, j exchange, with a rate W t J .  The two selected spins i, j may 
be nearest neighbours (li - j l  = 1) or arbitrarily distant. These two cases are studied here. 
The rate Wfj(j(a) may be defined in the following way 

WK.(U) 1.J = wyui,uj + Uj,Ui) = Pi, j (U) 

where p;,j is an operator that exchanges the spins at sites i and j .  We shall denote by 
E = ro/rK the ratio of the intrinsic microscopic rates. Since we were not able to perform 
an exact analysis of the time evolution for the magnetization m and quadrupolar average q 
in the case of finite E ,  we applied the Monte Carlo method to study this system. We first 
considered the same weight for the bare rates (e = 1) but long-range exchanges (random 
mixing). It is well known that the king version of these competing dynamics shows no 
phase transition (at finite temperature) [6]. The evolution equation for the magnetization is 
linear and therefore the stationary state presents only the trivial solution. A phase transition 
is, however, observed [6] for king spins if the Glauber rate is modified to include nonlinear 
terms for the order parameter. It is argued by some authors 171 that under these conditions 
the 1 - d  king model exhibits mean-field behaviour, because the random mixing is expected 
to play the role of infinite-range interactions in the equilibrium Ising model. We here observe 
that the Glauber rate for the BEG model is intrinsically nonlinear (although it reduces to the 
linear form in the appropriate D + --CO limit) and perhaps for this reason it leads to phase 
transitions even in the 1 - d systems. 

The second case we studied corresponds to nearest-neighbour exchanges and arbitrary 
E .  The system also presents a phase transition in the stationary state, but the exponents are 
different from the ones found before. We therefore conclude that there are strong violations 
of universal behaviour in these non-equilibrium systems. 

2. Second-order phase transitions 

2.1. Long-range exchanges 

The model we simulated consists of a l i n k  chain with size varying from L = 100 up to 
L = 5000 sites. Periodic boundary conditions were always assumed in order to minimize 
finite-size effects. Up to IO6 MCS were accepted, particularly for the largest samples. 
Furthermore, the initial evolution was discarded until a stationary distribution was reached. 
We accepted that stationarity was obtaineed when the following quantities were found to be 
independent of time: 
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XL = L((mZ) - (m)'] 
~ which are, respectively, the magnetization, quadrupolar average and susceptibility. It is 

important to analyse finite-size effects carefully. A powerful tool for this purpose is the 
finite-size theory, first introduced by Fisher [SI; for a recent review see Privman [9]. We 
assumed that the finite-size theory for equilibrium systems can also be applied to this non- 
equilibrium model. We define a critical temperature for the finite system T,(L) as the one 
corresponding to the peak of the susceptibility. According to the finite-size hypothesis it 
follows that 

~ 

where Tc is the value of T&) when L + m. This ansatz arises from.the assumption that 
there is a characteristic correlation lenght 6 in the system. Furthermore if we  admit that a 
certain quantity, AL(T),  presents algebraic singular behaviour when L + 03, then it should 
have the following scaling behaviour AL(T) .=  L"'Y~(L'"k),  where t = (T - T,)/T, and 
&x) must~be constant for small x and i ( x )  % x-" for large enough values of x .  One 
obtains the critical temperature T, from the Binder number [IO], which measures deviation 
from a Gaussian distribution, 

This quantity goes to zero at high temperature and to at low temperatures. When UL 
is plotted against temperature for different system sizes the curves should intersect at a 
fixed point value U" and T = T,. This quantity U* is universal for equilibrium systems 
(U* = 0.61 1 2~ 0.001, for d = 2 [I I]). In our simulations (figure 1) we also obtain (within 
numerical accuracy) a universal value (U* = 0.357 f 0.005). 

0.7 4 t - L=500 - L = l O O O  - L=2000 

0.55 057 0.59 0.61 , ~ 0.63 0.65 

' ,  T 

Figure 1. The 'Binder number', UL, against temperature for different system sizes. 
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Figure 2. (a) Plot of the magnetization (ML = ([ml)) for different values of L. (b) Plot of the 
susceptibility XL for different values of L. 

The previously defined quantities are therefore expected to obey the following finite 

Using these relations the critical exuonents may 

(3) 

(4) 

(5) 

- We illustrate the method 
for long-range exchanges and equal microscopic rates. Figures Z(a) and (6) show the 
data obtained for the order parameter ML and for the susceptibility X L  as a function of 
temperature for different sample sizes. From the position of the peak we obtain TJL) 
which when plotted (figure 3) against L-’’” yields Tc and this may be compared with the 
estimate from Binder’s number. At the same time, the best value of U is obtained when a 
linear fit is achieved. Our results are Tc = 0.5974 j, 0.0020 and U = 1.709 j, 0.004. The 

: obtaine 
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Figure 3. Plot of T,(L) against L-'lV. The values of TdLj correspond to the peak of the 
susceptibility The exponent Y is obtained when the data are fitted to a straight line. 

 exponent p (@ = 0.325 i 0.020) is obtained from a linear fit of In M L = ~  against In(T - Tc) 
(figure 4). Figure 5 shows that we can again rule out the mean-field value @ = $) as well as 
the 2d Onsager value (p = i). Also, the exponent y was extracted from the susceptibility 
peak ,y'(T,(L)) and also at T,, , y ~ ( T c )  (figure 6). y = 0.996&0.004. Findly, from aplot of. 
M(L)L@/" againt L'l"t (figure 7) we obtained a scding of the data, using for exponents y ,  
U the values found previously; the exponent @ may be independently found from a linear fit. 
Within numerical error (approximately 4%), we therefore find that these critical exponents 
obey the relation 2p/v + y/v = d = 1. We have not analysed possible biased systematic 
errors. Our enor bars arise from the unavoidable dispersion of the numerical results due to 
the many different runs we performed. We can only claim that the hyperscaling relation 
is obeyed within numerical accuracy. Simulations were also performed at seven different 
points in phase space. Although the critical temperature is found to depend on the model 
parameters (figure 8) the exponents are the same, in agreement with universality. 

-0.5 I 
t 
I 

Figure 4. Plot of InMr,m against In(T - G) 
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0.53 t 

Figure 5. The data for the extrapolated order parameter M wrresponding to the infinite lattice 
are plotted for different values of 6. The case 6 = 0.325 produces the best straight line over 
the expected tempelilture range and extrapolates lo a value Tc consistent with the one obtained 
by a different analysis. 

2 
6 6.75 7.5 8.25 9 

Ln L 

Figure 6. Plot of In,y for the susceptibility in the peak (squares) and at T. (circles), against 
In L. 

2.2. Short range exchanges 

In contrast to the previous case, here we will consider dierent intrinsic microscopic rates 
and nearest-neighbour exchanges in order to study the effect of the range of the exchanges. 
A similar analysis was done in the 1 - d king case where phase transitions were only 
observed for some values of the rates [12]. In our case, however, we observed phase 
transitions for different values of E (figure 9) and for different points in the phase space 
(in fact the ones previously considered). In figure 9 we show a plot of TJL,  p ) ,  where 
p = 1/(1 + E ) ,  against L-’/”. The slope of the fits gives the exponent U and this appears 
to be the same within the numerical error for the different rates. 

Figure 10 shows plots of the susceptibility against temperature for different system sizes. 
The critical exponents appear to be universal for all phase-space points where the transition 
is second-order. The critical exponents were found f i  = 0.07 * 0.03, y = 1.60 i 0.06 
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Figure 7. Plot of M ~ L f i l '  against fL'/", using @[U = 0.20, I/v = 0.58. T, = 0.5974. From 
the slope of the linear fit, we obtain @ l v  = 0.191. 

, , 

Figure S. Plot of T< against K I J  (for D I J  = 0). The curve passing through be data points 
is a guide to the eye. The broken curve extrapolates to the origin, where we should recase the 
results for the two-state lsing model. 

and w = 1.53 f 0.08. The model now belongs to a completely different universality class. 
The exponents y and w were determined with a reasonable accuracy, however for the mean 
values found,~y/v is a little larger than one, which seems to be in disagreement with the 
hyperscaling relation, but we believe  that^ they have to obey as before and also in other 
non-equilibrium problems. The exponent p is small and affected by a big error because the 
magnetization decreases more rapidly at temperatures near Tc. 

3. First-order phase transitions 

In this section we will show in a qualitative way the existence of first-order phase transitions 
for some values of the parameters in the phase space ( D / J ,  K / J ) .  We have considered 
E = 1 and long-range exchanges. The model was simulated in a way analogous to the 
previous one. However, in order to observe~the~different phases~we repeated the simulations 
for each point in phase space with different initial configurations (figure 11). For T z T; 
(critical temperature) all initial configurations go to the same fixed point corresponding to 
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Figure 9. Plot of Tc(L, p )  for different values of p = (1 +e)- '  against L-'/". 

- L=lOO - L=200 
L=500 - L=l 000 

-+- L=250 
+ L=350 

0 0.1 0.4 0.5 0.6 

Figure 10. Plot of the susceptibility xr. against temperature for p = 0.5. 

the quadrnpolar phase, where ML - 0 and QL is different from zero. But for'T < T,' the 
system bifurcates and for each temperature we observe two distinct values of ML and QL, 
corresponding to the phases ... + + + + + .. . or ... - - - . . . (ML = Qt = 1) and 
. . .OOOOO.. . (ML = QL. = 0). The phase with ML = 0 and QL = 0 is not a paramagnetic 
phase but an ordered phase with all spins equal to zero. The phase diagram is therefore 
very rich and presents an interesting problem about the relative stability of the phases when 
first-order phase transitions are observed in non-equilibrium systems. 
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Figure 11. Typical plot of a first-order phase transition. 

4. Conclusion 

Using Monte Carlo simulations and finite-size scaling have we studied the 1 - d BEG model 
under the influence of two competing dynamics, one Glauber and the other Kawasaki. The 
main scope of this study was to understand the effect of the ratio of intrinsic microscopic 
rates and the range of the exchanges. We obtained the critical exponent@, y and v in two 
distint cases: E = 1 and long-range exchanges; and E # 1 and short-range exchanges. In 
each of these cases we found different critical exponents, though they apppear to be universal 
within the respective phase-space diagrams. Furthermore, the exponents are not classical 
although mean-field behaviour is obtained for infinitely fast exchanges?. We conclude that 
the range of exchanges is a decisive factor in the definition of universality classes at least 
for these simple non-equilibrium systems. For the one-dimensional non-equilibrium king 
model it is known that the range of the spin exchanges yields a critical behaviour which 
depends on the assumed power law (Ltvy flight) for the space decay of the microscopic rates 
[13]. This behaviour is similar to the well known behaviour found for the one-dimensional 
equilibrium king model and it interpolates between the short- and infiniterange models. 

Similar, possibly richer behaviour may be expected for the non-equilibrium, one- 
dimensional BEG model. In this paper we have just considered the two extreme limits- 
infinite-range and nearest-neighbour spin exchanges. Our results were obtained after 
approximately 5000 h of CPU time in Workstations HP 720 and CDC 4680. It is~anticipated 
that a thorough examination of the whole phase space or the'influence of'the range of the 
spin exchanges will take much more CPU time than we can afford at the moment. Therefore, 
the important questions about the other possible universality classes in this model are beyond 
the scope of this paper and will hopefully be considered for future research. 
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